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Canonical phase-space approach to the noisy Burgers equation
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Presenting a general phase-space approach to stochastic processes we analyze in particular the Fokker-
Planck equation for the noisy Burgers equation and discuss the time-dependent and stationary probability
distributions. In one dimension we derive the long-time skew distribution approaching the symmetric station-
ary Gaussian distribution. In the short-time regime we discuss heuristically the nonlinear soliton contributions
and derive an expression for the distribution in accordance with the directed polymer-replica model and
asymmetric exclusion model results.@S1063-651X~99!00710-2#

PACS number~s!: 05.10.Gg, 64.60.Ht, 05.45.Yv
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The strong coupling aspects of systems driven stocha
cally far from equilibrium present a formidable challenge
modern statistical physics and soft-condensed matter.
phenomena in question are ubiquitous and include turbule
in fluids, interface and growth problems, chemical reactio
self-organized critical systems, and even economical and
ciological models.

In recent years much of the focus of modern statisti
physics and soft-condensed matter has shifted towards
systems. Drawing on the case of static and dynamic crit
phenomena in and close to equilibrium where scaling, c
cal exponents, and universality have served to organize
understanding and to provide calculational tools, a sim
approach has been advanced towards nonequilibrium
nomena with the purpose of elucidating scaling proper
and more generally the morphology or pattern formation i
driven state.

Whereas perturbative field theory together with the d
namic renormalization group have proven successful in
context of dynamic critical phenomena, the extension to n
equilibrium phenomena is often plagued with both techni
and conceptual problems. This is related to the occurrenc
strong coupling features encountered, for example, in
notable case of hydrodynamical turbulence, and there
need for the development of appropriate nonperturbative
oretical tools in order to access the strong coupling regim

In this context the noisy Burgers equation for the slo
un5¹nh (n51, . . . ,d) of a growing interface@1#,

]un

]t
5n¹2un1lup¹pun1¹nh, ~1!

or, equivalently, the Kardar-Parisi-Zhang~KPZ! equation@2#
for the heighth, ]h/]t5n¹2h1(l/2)¹nh¹nh1h, provide
maybe the simplest continuum description of an open dri
nonlinear system exhibiting strong coupling features such
pattern formation and a new dynamical scaling univera
class. In Eq.~1! n is a damping constant or viscosity cha
acterizing the linear diffusive term,l is a coupling strength
for the nonlinear mode coupling or growth term, andh is a
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Gaussian white noise driving the system into a station
state and correlated according tôh(xn ,t)h(xn8 ,t8)&
5D)nd(xn2xn8)d(t2t8), characterized by the nois
strengthD.

Notwithstanding the simple form of Eq.~1!, the driven
Burgers equation introduced originally in order to model a
pects of turbulence and the KPZ equation providing the s
plest description of a growing interface, the morphology a
scaling properties embodied in Eq.~1! have been difficult to
extract and a full understanding of Eq.~1! remains one of the
important issues in nonequilibrium statistical physics@3#.
The status is that besides perturbation theory inl @4# that
regarding the scaling properties provides the roughness
dynamic exponents (z,z)5(1/2,3/2) ind51, but, otherwise,
is limited to ane expansion about the~lower! critical dimen-
sion d52, yielding a kinetic phase transition aboved52
separating a weak-coupling phase~the l50 universality
class! with exponents (z,z)5@(22d)/2,2# from a strong-
coupling phase and to all orders ine the exponents (z,z)
5(0,2) on the phase line@5#, nonperturbative methods in
clude ~i! in the d51 case mapping to spin models@6# and
information gained from lattice models@7#, ~ii ! mapping to
directed polymers in combination with replica methods@3#,
~iii ! mode-coupling expansions@8#, and, most recently,~iv!
operator expansions yielding the strong-coupling expone
(z,z)5(2/5,8/5) in d52 and (z,z)5(2/7,12/5) in d53,
corresponding to skewness in the height distribution@9#.

In a recent series of papers@10# we addressed the bette
understood one-dimensional case and advanced a nonpe
bative approach to the noisy Burgers equation, which p
ports to elucidate both the morphology and scaling proper
of a growing interface ind51. Arguing that the noise
strengthD is the relevant nonperturbative parameter drivi
the system into a stationary state and thus circumventing~a!
the limitations of perturbation theory which is based on
effective expansion inl2D/n3 assuming regularity inD @4#
and ~b! the self-consistency assumptions underlying
mode-coupling approach@8#; the method was based on
weak noise saddle-point approximation to the Martin-Sigg
Rose functional formulation@11# of the noisy Burgers equa
tion ~1!. Importantly, the method yields coupled determin
tic field equations for the slopeu and a noise fieldw
4950 © 1999 The American Physical Society
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~characterizingh), replacing the stochastic Burgers equatio
admitting soliton solutions, and as a result a many-body
mulation of the pattern formation of a growing interface
terms of a dilute gas of propagating solitons with superpo
linear diffusive modes. The canonical form of the approa
also ~1! yields the soliton dispersion,E}lpz, z53/2, and
damped propagating linear mode dispersionv52 ink2

1luk, whereu is the soliton amplitude@12#, ~2! recovers
the scaling exponents (z,z)5(1/2,3/2) and an expression fo
the scaling function, and~3! associates the Burgers unive
sality class with the leading gapless soliton excitation.

In the present paper we develop a general canon
phase-space approach to a stochastic Langevin equatio
the Burgers type with additive white noise. This metho
which emerged from our previous studies alluded to abo
allows us to discuss and in some cases derive the statio
and time-dependent weak-noise solutions of the associ
Fokker-Planck equation for the probability distributions.
particular, for the Burgers equation~1! the time-dependen
and stationary distributions are given by

P~un ,T!} expF2
1

D
S~un ,T!G , ~2!

Pst~un!} lim
T→`

expF2
1

D
S~un ,T!G , ~3!

where the action has the canonical~symplectic! form

S5E
0

T

ddxdtS pn

]un

]t
2HD , ~4!

with Hamiltonian density H5pn@n¹2un1lum¹mun
2(1/2)¹n¹mpm#, yielding the coupled Hamiltonian equa
tions of motion,

S ]

]t
2lum¹mDun5n¹2un2¹n¹mpm , ~5!

S ]

]t
2lum¹mD pn52n¹2pn1l~pn¹mum2pm¹num!.

~6!

The abovemean fieldor hydrodynamicalequations, replac-
ing the noisy Burgers equation~1!, allow an analysis of the
time-dependent distributionP(un ,T). In principle, we have
to solve Eqs.~5! and ~6!, determining the orbits inpnun
phase space, and compute the action~4! and thusP(un ,T)
according to Eq.~2!.

The general framework is developed along the followi
lines, see also Ref.@13#: The Fokker-Planck equation pe
taining to a general Langevin equation with additive no
for the stochastic variableqi ( i is a discrete and/or continu
ous index!,

dqn

dt
52

1

2
Fn~ql !1hn , ~7!

^hn~ t !hm~ t8!&5DKnmd~ t2t8!, ~8!
,
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has the form, denoting ¹n5]/]qn , ]P/]t
5(1/2)¹n@DKnm¹mP1FnP#. Searching for a solution o
the form P} exp@2S/D#, it is an easy task to show that t
leading order in the noise strengthD, the actionS(qn ,t)
satisfies the Hamilton-Jacobi equation]S/]t1H(qn ,¹nS)
50, where the energyE5H and the canonically conjugat
momentumpn5¹nS. The HamiltonianH has the genera
form

H5~1/2!~Knmpnpm2Fnpn!, ~9!

implying the Hamiltonian equations of motion,

dqn

dt
5Knmpm2

1

2
Fn , ~10!

dpn

dt
5

1

2
pm¹nFm . ~11!

Assuming for simplicity thatFn→0 for qn→0 the energy
surfaces have the characteristic submanifold structure
picted in Fig. 1.

The origin in phase space constitutes a hyperbolic stat
ary point defined by the unstable zero-energy submani
pn50, thetransient manifold, and, assuming the existence
a stationary state, a stable submanifold defined byKnmpm
2Fn orthogonal topn , thestationary manifold. The station-
ary state is determined by orbits on the zero-energy m
folds whose structure thus characterizes the nature of
stochastic problem. The actionSand hence the distributionP
are given by

S~qn ,T,qn8!5E
0

T

dtFpn

dqn

dt
2HG , ~12!

P~qn ,T,qn8!} exp@2S~qn ,T,qn8!/D#, ~13!

where the orbit fromqn8 to qn is traversed in timeT. The
stationary distributionPst(qn) is thus obtained in the limit
T→` andE50, assuming thatE(T)} exp@2const3T# for
T→`,

FIG. 1. Canonical phase space in the general case. The
curves indicate the zero-energytransientsubmanifold~I! and sta-
tionarysubmanifold~II !. The stationary saddle point is at the origi
The finite time~T! orbit from qn8 to qn migrates to the zero-energ
submanifold forT→`.
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Pst~qn!5expF2
1

DE0

`

dtpn

dqn

dt G , ~14!

i.e., Pst is determined by theinfinite-time orbits on the zero
energy manifold.

This structure of phase space permits a simple non
chastic, deterministic discussion of the approach to the
tionary state of a damped noise-driven system in terms
dynamical system theory. Referring to Fig. 1, consider
orbit from qn8 to qn on the energy surfaceE(T) traversed in
time T. In order to attain the stationary stateE(T)→0 in the
limit T→`. For E;0 the initial part of the orbit moves
close to thepn50 submanifold and from Eq.~10! is deter-
mined bydqn /dt52(1/2)Fn, i.e., the deterministic noise
less version of Langevin equation~7!. In the absence of nois
the motion is transient and damped. The orbit slows do
near the stationary point~the origin in phase space! before it
picks up again and moves close to the other submani
Knmpm2Fn'pn . This final part of the orbit terminating in
qn at time T thus corresponds to the establishment of
stationary state. Ergodic behavior, i.e., the independenc
the initial configuration, is associated with the long~infinite!
waiting timenear~at! the stationary point.

In the special caseKnm5dnm andFn5¹nF, correspond-
ing to an effective fluctuation-dissipation theorem and
underlying free energyF, the energy~9! and the equations
of motion ~10! and ~11! are consistent with the zero-energ
submanifoldspn50 andFn5pn and yield the equilibrium
distribution Pst(qn)} exp@2F/D#. In the general case a de
termination of the time-dependent and stationary distri
tions require a knowledge of the energy submanifolds
combination with a solution of the canonical equations
order to determine the orbits.

The noisy Burgers equation~1! falls within the scope of
the general framework summarized above. With the iden
cationqi(t)→un(xm ,t), Knm→¹2)md(xm2xm8 ), andFn→
22(n¹2un1lum¹mun), we obtain Eqs.~2!–~6!. Note that
the canonical momentum, thenoise field pn , is essentially a
slaved variable.

In the cased51, which is the basis for our discussio
here, themean fieldequations~5! and~6! reduce to the form

S ]

]t
2lu¹ Du5n¹2u2¹2p, ~15!

S ]

]t
2lu¹ D p52n¹2p. ~16!

The distribution~2! is determined by the action~4!, which
has the general structureS5Sst(u)1Sskew(u,T)1Ssol(u,T)

The stationary distribution Pst(u) given bySst(u) is eas-
ily found by noting that Eqs.~15! and ~16! coincide on the
zero-energy submanifoldp52nu ~the energy densityH be-
comes a total derivative yieldingE50). Insertingp52nu
andE50 in Eqs.~2! and~4! in the limit T→` and integrat-
ing over time we obtain the symmetric Gaussian station
distribution @14#,

Pst~u!} expF2~n/D!E dxu~x!2G . ~17!
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Also, setting p52n(u1du) we find to leading order in
du(]/]t2lu¹)du5n¹2du. Noting that]/]t2lu¹ is in-
variant under the Galilean transformation:x→x2lu0t, u
→u1u0, and choosing an instantaneous frame with vani
ing u, du} exp@2nk2t#, implying that the orbits approach th
zero-energy stationary submanifoldp52nu.

The long-time skew distribution Pskew(u,T) is determined
by Sskew(u,T). For l50 we obtain in wave-number spac
the symmetric contribution,uk5*dx exp(2ikx)u(x), i.e., the
Gaussian or harmonic approximation,

Sskew
0 ~uk ,T!52nE dk

2p
uuku2 exp@22nk2T#, ~18!

defining a crossover timeTco}1/nk2. For a finite systemk
}1/L (L is the system size!, i.e.,Tco}L2/n, yielding the dy-
namic exponentz52 in accordance with the diffusive mod
contribution.

For lÞ0 and for largeT approximating the orbitclose to
the manifoldby an orbiton the manifold, insertingp52nu
in Eq. ~15!, we obtain the deterministic Burgers equatio
with h50 and viscosity2n that can be solved by means o
the Cole-Hopf transformation@2#, see also Refs.@15#. Thus
setting u5¹h and h52(2n/l)lnw yields the diffusion
equation]w/]t52n¹2w for w, which is solved by means
of the Green’s functionGx(T)5@4pnT#21/2exp@2x2/4nT#.
We obtainSskew(u,T)5n*dxu8(x)2, whereu5¹h and u8
5¹h8 are related according to the nonlinear expression,

exp@2~l/2n!h8#5E dx8Gx2x8~T!exp@2~l/2n!h#,

~19!

giving rise to the distribution

P~u,T!}Pst~u!expF n

DE dxu8~x!2G , ~20!

which by inspection is skew. To orderl in wave-number
space we also have, settingGk,T5exp@2nk2T#,

P~uk ,T!}Pst~uk!Pskew
0 ~uk ,T!Pskew

l ~uk ,T!, ~21!

where Pskew
0 } exp@2Sskew

0 /D#, Pskew
l } exp@2Sskew

l /D#, and
the anharmonic~or field theoretical one-loop! expressions

Sskew
l ~uk ,T!52lE dk

2p

dk8

2p
Fk,k8,T ,

Fk,k8,T5@Gk,2T2Gk,TGk1k8,TGk8,T#uku2k2k8hk8 ,
~22!

exhibiting skewness.
The short-time distribution Psol(u,T) given bySsol(u,T),

corresponding to an orbit off the zero-energy manifold,
determined by the soliton-diffusive mode contribution d
cussed in@10#. For a single soliton with boundary valuesu1

and u2 the propagation velocityv is given by the soliton
condition

u11u2522v/l. ~23!
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However, only theleft-handsoliton (u1,u2) carries non-
vanishing energy, momentum, and action according to
assignmentE5(2/3)nl(u1

3 2u2
3 ), P5n(u1

2 2u2
2 ), and S

5(1/6)nlTuu12u2u3 ~note the Galilean invariance ofS).
The action of a multisoliton configuration constituting
growing interface is then given by

Ssol~u,T!5
1

6
lnT(

lhs
uu12u2u3, ~24!

where summation is overleft-handsolitons~lhs! only.
Owing to the constraint imposed by the soliton conditi

~23! and the nonintegrability of the equation of motion w
can only give a qualitative discussion ofPsol. Since the satu-
ration width of an interface is a finite-size effect time-sca
separation only occurs for a finite system. Noting that
propagation of solitons and the imposition of periodic~or
bouncing! boundary conditions, in order to ensure growth
h, endows the velocity with a scale, i.e.,v;L/T, we obtain,
insertingu11u2522v/l;u12u2 in Eq. ~24! and from
Psol; exp@2Ssol/D# the soliton crossover timeTco

sol}
(1/l)(n/D)1/2L3/2, which is also consistent with the dimen
sionless argumentl(D/n)1/2t/x3/2 in the scaling function for
the slope correlations discussed in@8,10#.

In the short-time regimeT!Tco
sol the soliton configurations

contribute to P. Noting that uu12u2u3;(uL)3/2(Tl)23/2

;h3/2(Tl)23/2, we obtain, inserting in Eq.~24! (h is mea-
et

ys
e

e

sured relative to the mean height!,

Psol~h,T!} exp@2~n/D!~1/lT!1/2h3/2#, ~25!

in accordance with the directed polymer-replica-based re
@3# and the exact results for the asymmetric exclusion mo
@16#. The skewness of the distribution then arises from
bias in the statistical weight exp@2S/D# assigned to theleft-
and right-hand solitons giving rise to a predominance o
right-hand solitons (S50), corresponding to relative for
ward growth. In the long-time regime,T@Tco

sol, the soliton
contribution vanishes and only the diffusive modes and th
interactions contribute toP.

In this paper we have outlined a canonical phase-sp
approach to Langevin equations with additive noise; det
can be found in@17#. In addition to providing insight from
the dynamical system theory the method also yields a ca
lational tool for the determination of the weak-noise pro
ability distributions. In particular, we have applied th
method to the noisy Burgers equation ind51 and derived
expressions for the skew finite-time probability distributio
In the short-time regime our heuristic result is in agreem
with the directed polymer-replica method.

Discussions with M. Kosterlitz, T. Hwa, J. Hertz, P. Cv
tanović, K. B. Lauritsen, and A. Svane are gratefully a
knowledged.
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