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Canonical phase-space approach to the noisy Burgers equation
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Presenting a general phase-space approach to stochastic processes we analyze in particular the Fokker-
Planck equation for the noisy Burgers equation and discuss the time-dependent and stationary probability
distributions. In one dimension we derive the long-time skew distribution approaching the symmetric station-
ary Gaussian distribution. In the short-time regime we discuss heuristically the nonlinear soliton contributions
and derive an expression for the distribution in accordance with the directed polymer-replica model and
asymmetric exclusion model resulf§1063-651X99)00710-3

PACS numbgs): 05.10.Gg, 64.60.Ht, 05.45.Yv

The strong coupling aspects of systems driven stochastizaussian white noise driving the system into a stationary
cally far from equilibrium present a formidable challenge instate and correlated according tén(x,,t) 7(x;,t"))
modern statistical physics and soft-condensed matter. The AT] 5(x,—x/)8(t—t’), characterized by the noise
phenomena in question are ubiquitous and include turbulengqrengtm_
in fluids, interface and growth problems, chemical reactions, Notwithstanding the simple form of Eql), the driven

self-organized critical systems, and even economical and ScEurgers equation introduced originally in order to model as-

ciological models. . o :
- f turbulen nd the KPZ ion providing the sim-
In recent years much of the focus of modern stausucaPeCtS of turbulence and the equation providing the s

physics and soft-condensed matter has shifted towards sualﬂeSt description of a growing interface, the morphology and

systems. Drawing on the case of static and dynamic critica%caIIng properties embodied in Bd) have been difficult to

phenomena in and close to equilibrium where scaling, criti-f3XtraCt and a full understanding of Bd) remains one of the

cal exponents, and universality have served to organize odfportant ISSUes in ngneqwhbnum ,Stat'St'Cal phys[éﬁ.
understanding and to provide calculational tools, a similar' "€ Status is that besides perturbation theory ifd] that

approach has been advanced towards nonequilibrium phé&egarding the scaling properties provides the roughness and
nomena with the purpose of elucidating scaling propertie§lynamic exponentsi(z) =(1/2,3/2) ind=1, but, otherwise,
and more generally the morphology or pattern formation in ds limited to ane expansion about thdower) critical dimen-
driven state. sion d=2, yielding a kinetic phase transition abode=2
Whereas perturbative field theory together with the dy-separating a weak-coupling phasge N =0 universality
namic renormalization group have proven successful in thelasg with exponents {,z)=[(2-d)/2,2] from a strong-
context of dynamic critical phenomena, the extension to noneoupling phase and to all orders inthe exponents {,2)
equilibrium phenomena is often plagued with both technical=(0,2) on the phase ling5], nonperturbative methods in-
and conceptual problems. This is related to the occurrence @jude (i) in the d=1 case mapping to spin modd] and
strong coupling features encountered, for example, in théhrformation gained from lattice mode|3], (i) mapping to
notable case of hydrodynamical turbulence, and there is girected polymers in combination with replica meth¢ag
need for the development of appropriate nonperturbative theiii ) mode-coupling expansior§], and, most recently(iv)
oretical tools in order to access the strong coupling regimegperator expansions yielding the strong-coupling exponents
In this context the noisy Burgers equation for the slope(,z)=(2/5,8/5) ind=2 and (,z)=(2/7,12/5) ind=3,
u,=Vyh (n=1,... d) of a growing interfac¢1], corresponding to skewness in the height distribufi@h
In a recent series of papels0] we addressed the better
(1) understood one-dimensional case and advanced a nonpertur-
bative approach to the noisy Burgers equation, which pur-
ports to elucidate both the morphology and scaling properties
or, equivalently, the Kardar-Parisi-ZhafigPZ) equation 2] of a growing interface ind=1. Arguing that the noise
for the heighth, oh/dt=vV2h+(\/2)V,hV h+ 7, provide strengthA is the relevant nonperturbative parameter driving
maybe the simplest continuum description of an open drivemhe system into a stationary state and thus circumverigng
nonlinear system exhibiting strong coupling features such athe limitations of perturbation theory which is based on an
pattern formation and a new dynamical scaling univeralityeffective expansion in2A/v® assuming regularity il [4]
class. In Eq(1) v is a damping constant or viscosity char- and (b) the self-consistency assumptions underlying the
acterizing the linear diffusive terna, is a coupling strength  mode-coupling approacf8]; the method was based on a
for the nonlinear mode coupling or growth term, ands a  weak noise saddle-point approximation to the Martin-Siggia-
Rose functional formulatiofl1] of the noisy Burgers equa-
tion (1). Importantly, the method yields coupled determinis-
*Permanent address. tic field equations for the slop& and a noise fielde

auy,
at

=vV2Up+ AUV U+ V7,
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(characterizingy), replacing the stochastic Burgers equation, Pn I
admitting soliton solutions, and as a result a many-body for-

mulation of the pattern formation of a growing interface in :
terms of a dilute gas of propagating solitons with superposed

linear diffusive modes. The canonical form of the approach ~/

also (1) yields the soliton dispersiorge«\p?, z=3/2, and T

damped propagating linear mode dispersian= —ivk? -— ;
+Auk, whereu is the soliton amplitud¢12], (2) recovers An n
the scaling exponentg (z) = (1/2,3/2) and an expression for /

the scaling function, an€B) associates the Burgers univer- /

sality class with the leading gapless soliton excitation.

In the present paper we develop a general canonical
phase-space approach to a stochastic Langevin equation of
the Burgers type with additive white noise. This method, ) . )
which emerged from our previous studies alluded to above, FIG..l._CanonlcaI phase space in the gen_eral case. The solid
allows us to discuss and in some cases derive the stationafyves indicate the zero-energynsientsubmanifold(l) andsta-
and time-dependent weak-noise solutions of the associatdfgnary submanifold(l). The stationary saddle point is at the origin.
Fokker-Planck equation for the probability distributions. In The finite time(T) orbit from g, to g, migrates to the zero-energy
particular, for the Burgers equatigqd) the time-dependent submanifold forT—c.
and stationary distributions are given by

An

has the form, denoting V,=4/dq,, JdP/at
1 =(1/2)V [AK VP +F,P]. Searching for a solution of
P(up,,T)ox ex;{ - KS(U“ ,T)}, (2)  the form P« exd—SA], it is an easy task to show that to
leading order in the noise strength, the actionS(q,,,t)
satisfies the Hamilton-Jacobi equatia®/ dt+H(q,,V,S)

: 1 =0, where the energig=H and the canonically conjugate
PS‘(U”)MT“_TCGX[{ KS(U“’T)}’ ©® momentump,=V,S. The HamiltonianH has the general
form
where the action has the canoni¢symplectig form
H=(1/2)(K;mPnPm—FnPn), 9
T
SZJ d9xdt Dn%—H), (4)  implying the Hamiltonian equations of motion,
0
: I . dan _
with  Hamiltonian  density H=p,[ »V?U,+ AU,V U, ai = KamPm= 5Fn, (10
—(1/2)V VPl Yielding the coupled Hamiltonian equa-
tions of motion, dp, 1
——= 5PmViFm- (11)
9 , dt 2
E_)\umvm Up=vVUy=V VP, ) . . L
Assuming for simplicity that~,—0 for g,—0 the energy
surfaces have the characteristic submanifold structure de-
g o2 _ picted in Fig. 1.
(&t )\Ume) Pn=—VPrt NMPnVmUm= PmVnlm)- The origin in phase space constitutes a hyperbolic station-

(6) ary point defined by the unstable zero-energy submanifold
p,= 0, thetransient manifoldand, assuming the existence of
The abovemean fieldor hydrodynamicakquations, replac- a stationary state, a stable submanifold definedkRyp,
ing the noisy Burgers equatidil), allow an analysis of the —F,, orthogonal top,,, the stationary manifold The station-
time-dependent distributioR(u,,T). In principle, we have ary state is determined by orbits on the zero-energy mani-
to solve Egs.(5) and (6), determining the orbits irp,u,  folds whose structure thus characterizes the nature of the
phase space, and compute the actignand thusP(u,,T) stochastic problem. The acti@eand hence the distribution
according to Eq(2). are given by
The general framework is developed along the following

lines, see also Refl3]: The Fokker-Planck equation per- N Un

taining to a general Langevin equation with additive noise S(0n . T.0n) = 0 dt an—H : (12

for the stochastic variable; (i is a discrete and/or continu-

ous inde, P(qn.T.00)= exd —S(ay, T.a/Al, (13
%z _ EF (a)+7 (7) where the orbit fromg;, to q, is traversed in timeT. The
dt 2" a stationary distributionP(q,,) is thus obtained in the limit

T—o andE=0, assuming thaE(T)« exg —constx T] for
<nn(t)nm(t/)>:AKnm5(t_t/)u (8 T—oo,
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(14 su(algt—ruV)Ssu=rV2su. Noting thata/at—\uV is in-
variant under the Galilean transformatiox:—x—\ugt, u
—Uu+Ug, and choosing an instantaneous frame with vanish-
ing u, suc exyd — vk’t], implying that the orbits approach the

This structure of phase space permits a simple nonstd-er0-€Nergy .statlonary s_ubmaquk;lzZvu. . ,
chastic, deterministic discussion of the approach to the sta- 1€long-time skew distribution &,(u,T) is determined
tionary state of a damped noise-driven system in terms ofY SskelU,T). FOrA=0 we obtain in wave-number space
dynamical system theory. Referring to Fig. 1, consider arjn® Symmetric contributiony, = fdxexp(-ikx)u(x), i.e., the
orbit from g/, to g, on the energy surfacE(T) traversed in  >aussian or harmonic approximation,
time T. In order to attain the stationary std&€T)—0 in the dk
limit T—o. For E~0 the initial part of the orbit moves Sgkemﬁuk:T):_Vf —|u?exd —2vk?T], (18
close to thep,=0 submanifold and from Eq10) is deter- 2m

mined bydq,/dt=—(1/2)F,, i.e., the deterministic noise- - . 2 -
: : : . defining a crossover tim& .« 1/vk<. For a finite systenk
less version of Langevin equati¢r). In the absence of noise . NI o
9 quation «1/L (L is the system sidei.e., To,xL?/ v, yielding the dy-

the motion is transient and damped. The orbit slows down ~'- _ . e
near the stationary poirithe origin in phase spagbéefore it hamic exponent= 2 in accordance with the diffusive mode
picks up again and moves close to the other submanifol§ontribution. o .
KnmPm—Fnl pn- This final part of the orbit terminating in FO”‘?&O and for Iar.geT approxmatlng the prbmlose to

gy at time T thus corresponds to the establishment of the"® Manifoldby an orbiton the manifoldinsertingp=2vu
stationary state. Ergodic behavior, i.e., the independence df Ed- (15, we obtain the deterministic Burgers equation

the initial configuration, is associated with the lofigfinite) ~ With 7=0 and viscosity—» that can be solved by means of
waiting timenear(at) the stationary point. the Cole-Hopf transformatiof2], see also Refd.15]. Thus

In the special cask = &, andF,=V ,®, correspond- setting u=Vh and hj —(2v/)\)lnyv yi_elds the diffusion
ing to an effective fluctuation-dissipation theorem and arfuationdw/dt=—»V=w for w, which |§1?20Ived b2y means
underlying free energyp, the energy(9) and the equations ©°f the Green’s f“nCt'E'Gx(T),:H;”T] ex_p[—x /4VT],'
of motion (10) and (11) are consistent with the zero-energy e O,bta'”sske\n(U'T)_ vfdxu'(x)*, whereu=Vh andu
submanifoldsp, =0 andF,=p,, and yield the equilibrium =Vh' are related according to the nonlinear expression,
distribution P¢(q,,) = exd —®/A]. In the general case a de-
tgrminatior) of the time-dependent and stationary .distribl.J— exq—()\/ZV)h’]zf dx'G,_,(T)exd — (M/2v)h],
tions require a knowledge of the energy submanifolds in

1 (= day, Also, setting p=2v(u+éu) we find to leading order in
Ps(dn) =€x _Zjo dtan )

i.e., Pg is determined by th@nfinite-time orbits on the zero-
energy manifold

combination with a solution of the canonical equations in (19
order to determine the orbits. o : o
The noisy Burgers equatiofl) falls within the scope of giving rise to the distribution
the general framework summarized above. With the identifi- »
cation g;(t) — Un(Xm,t), Knm— V2 md(Xm—X/,), andF,— P(u,T)x Pst(u)ex;{xf dxu’(x)?], (20)

—2(wV2u,+\u,Vup,), we obtain Eqs(2)—(6). Note that
the canonical momentum, thmise field p, is essentially a
slaved variable

In the cased=1, which is the basis for our discussion
here, themean fieldequationg5) and(6) reduce to the form

which by inspection is skew. To order in wave-number
space we also have, setti@y r=ex{ — vk’T],

P(ug, T P u) P U, T)PA (U, T), (20)

J
<__)\UV) u= VVZU_VZp, (15) where ngewoc exq_ﬁkeV\/A]v P;\kewoc exq_%keV\/A]i and
at the anharmonicor field theoretical one-logpexpressions
d dk dk’
— —— 2
(E )\uV)p— vVap. (16 Sgkevxﬁuk'T)ZZ)\fﬂﬁFk,k',Ta

The distribution(2) is determined by the actiof), which _ _

has the general structu= Sy(u) + Sgen(U, T) + Ssoi(U,T) Pk = 1Grzr= GirGreie1Gre Ui (22)
The stationary distribution B(u) given bySy(u) is eas-

ily found by noting that Egs(15) and (16) coincide on the  exhibiting skewness.

zero-energy submanifold=2wvu (the energy densit§ be- The short-time distribution B, (u,T) given by Sey(u,T),

comes a total derivative yielding=0). Insertingp=2vu  corresponding to an orbit off the zero-energy manifold, is

andE=0 in Egs.(2) and(4) in the limit T—cc and integrat-  determined by the soliton-diffusive mode contribution dis-

ing over time we obtain the symmetric Gaussian stationargussed irf10]. For a single soliton with boundary valuas

distribution[14], and u_ the propagation velocity is given by the soliton

condition

P(u)x ex;{—(v/A)f dxu(x)?|. (17 UL +U_=—2v/\. (23
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However, only thdeft-handsoliton (U, <u_) carries non- sured relative to the mean height

vanishing energy, momentum, and action according to the

assignment = (2/3)vA(u3 —u?), M=w(u?-u?), andS PN, T)o ex — (v A) (1N T)Y%h32), (25)
=(1/6)vAT|u, —u_|® (note the Galilean invariance &).

The action of a multisoliton configuration constituting a . . . .
A . . in accordance with the directed polymer-replica-based result
growing interface is then given by

[3] and the exact results for the asymmetric exclusion model
1 [16]. The skewness of the distribution then arises from the
Seoi(U,T)= 5)””—; lu,—u_|3 (24)  bias in the statistical weight ekp SA] assigned to théeft-
S and right-hand solitons giving rise to a predominance of

where summation is oveeft-handsolitons(lhs) only. right-hand solitons S=0), Co”eSpO”di”%S},? trr?lativ?t for-
e soliton

Owing to the constraint imposed by the soliton conditionard growth. In the long-time regimd,>T¢,, _
(23) and the nonintegrability of the equation of motion we _contannon vams_hes and only the diffusive modes and their
can only give a qualitative discussion®f,. Since the satu- Intéractions contribute 8. _
ration width of an interface is a finite-size effect time-scale !N this paper we have outlined a canonical phase-space
separation only occurs for a finite system. Noting that the?PProach to Langevin equations with additive noise; details
propagation of solitons and the imposition of periodee ~ €@n be found if17]. In addition to providing insight from

bouncing boundary conditions, in order to ensure growth in the dynamical system theory the method also yields a calcu-
h, endows the velocity with a scale, i.e.~L/T, we obtain lational tool for the determination of the weak-noise prob-

insertingu, +u_=—2v/\~u, —u_ in Eq. (24) and from ability distribution_s. In particular, we have applie_d the
P~ exd—S./A] the soliton crossover timeTig'oc method to the noisy Burgers eq_uat|0ndn: 1 find .de.rlveq
(1) (»/A)Y2L32, which is also consistent with the dimen- expressions for the ;kew f|n|te—t|rT_1e_ probab|I.|ty.dlstr|but|on.
sionless argument(A/v)*%/x3? in the scaling function for In the short-time regime our heuristic result is in agreement
the slope correlations discussed[8)10. with the directed polymer-replica method.

In the short-time regim&<T<2 the soliton configurations Discussions with M. Kosterlitz, T. Hwa, J. Hertz, P. Cvi-

contribute toP. Noting that |u, —u_|®~(uL)¥%TA) %2  tanovig K. B. Lauritsen, and A. Svane are gratefully ac-
~h%HT\) %2, we obtain, inserting in Eq(24) (h is mea- knowledged.
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